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Abstract A novel class of counting polynomials, called Cluj polynomials is
proposed on the ground of Cluj matrices. The polynomial coefficients are calculated
from the above matrices or by means of orthogonal edge-cuts, in case of distance-
based edge-calculated version. Basic definitions and properties of the Cluj matrices
and corresponding polynomials are given. Relation with other counting polynomials
is evidenced. Utility of Cluj descriptors in predicting the resonance energy of a set of
planar polyhexes is exemplified.
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1 Introduction

It is well-known that a graph can be described by: a connection table, a sequence of
numbers, a matrix, a polynomial or a derived number (called a topological index). In
Quantum Chemistry, the early Hűckel theory calculates the levels of π -electron energy,
of the molecular orbitals in conjugated hydrocarbons, as roots of the characteristic
polynomial [1–3]:

P(G, x) = det[xI − A(G)] (1)
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In the above, I is the unit matrix of a pertinent order and A the adjacency matrix of the
graph G. The characteristic polynomial is involved in the evaluation of topological
resonance energy TRE, the topological effect on molecular orbitals TEMO, the aro-
matic sextet theory, the Kekulé structure count, etc [1–8].

The coefficients m(G, k) in the polynomial expression:

P(G, x) =
∑

k

m(G, k) · xk (2)

are calculable from the graph G by a method making use of the Sachs graphs, which
are subgraphs of G. Relation (2) was found independently by Sachs, Harary, Milić,
Spialter, Hosoya, etc [2]. The above method is useful in small graphs but, in larger
ones, the numeric methods of linear algebra, such as the recursive algorithms of Le
Verier, Frame, or Fadeev, are more efficient [9,10].

An extension of relation (1) was made by Hosoya et al. [11] and others [12–15]
by changing the adjacency matrix with the distance matrix and next by any square
topological matrix.

Relation (2) is a general expression of a counting polynomial, written as a sequence
of numbers, with the exponents showing the extent of partitions p(G), ∪p(G) =
P(G) of a graph property P(G) while the coefficients m(G, k) are related to the
occurrence of partitions of extent k.

Counting polynomials have been introduced, in Mathematical Chemistry litera-
ture, by Hosoya [16,17] with his Z-counting (independent edge sets) and the distance
degree (initially called Wiener and later Hosoya) [18,19] polynomials. Their roots
and coefficients are used for the characterization of topological nature of hydrocar-
bons.

Hosoya also proposed the sextet polynomial [20–23] for counting the resonant rings
in a benzenoid molecule. The sextet polynomial is important in connection with the
Clar aromatic sextets [24,25] expected to stabilize the aromatic molecules.

The independence polynomial [26–30] counts selections of k-independent verti-
ces of G. Other related graph polynomials are the king, color and star polynomials
[31–37].

If instead of sets of independent vertices one counts sets of mutually adjacent ver-
tices, one obtains the clique polynomial [38–40]. More about polynomials the reader
can find in Ref. [2].

In the case of some distance-related properties, the polynomial coefficients are
calculable from the layer and shell matrices [41–45] built up according to the vertex
distance partitions of a graph and calculable by the TOPOCLUJ software package
[46].

The present paper introduces a novel class of counting polynomials based on ver-
tex proximities, as given by the Cluj fragments, calculated by the above mentioned
software. The article is organized as follows. Section 2 gives the definitions of Cluj
matrices and some examples. In Sect. 3, the Cluj polynomials are introduced while their
properties are discussed, in connection with other counting polynomials, in Sect. 4.
In Sect. 5, an example of using descriptors derived from Cluj matrices/polynomials in
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predicting the resonance energy of some polyhex hydrocarbons is given. Conclusions
and references will close the paper.

2 Cluj matrices

A Cluj fragment, [2,47–52] symbolized C Ji, j,p , collects vertices v lying closer to i
than to j , the endpoints of a path p(i, j). In other words, such a fragment collects the
vertex proximity of i against any vertex j , joined by the path p, with the distances
measured in the subgraph G−p, as shown in the following equation:

C Ji, j,p = {
v
∣∣v ∈ V (G); D(G−p)(i, v) < D(G−p)( j, v)

}
(3)

In cycle-containing graphs, more than one path could join the pair (i, j), thus result-
ing more than one fragment related to i (with respect to j and a given path p). By
definition, the entries in the Cluj matrix are taken as the maximum cardinality among
all such fragments:

[UCJ]i,j = max
p

∣∣C Ji, j,p
∣∣ (4)

In trees, due to the unicity of paths joining any two vertices, C Ji, j,p means the set of
paths going to j through i . In this way, we characterize the path p(i , j) by means of a
single endpoint, that suffices for the unsymmetric matrix UCJ.

When the path p belongs to the set of distances DI(G), the suffix DI is added to
the name of matrix, as UCJDI. When path p belongs to the set of detours DE(G), the
suffix is DE. The Cluj matrices are defined in any graph and are, in general, unsym-
metric, excepting some symmetric graphs. They can be symmetrized by the Hadamard
multiplication with their transposes [2,52]

SMp= UM·(UM)T (5)

SMe= SMp·A (6)

The subscript p means the matrix calculated on paths (i.e., on all pairs of vertices)
while e refers to an edge-calculated (i.e., on all adjacent vertices) matrix. Basic proper-
ties and applications of the above matrices and derived descriptors have been presented
elsewhere [47–51]. Figure 1 and Tables 1–4 give examples of Cluj matrices, calculated
on distance and detour, respectively.

3 Cluj polynomials

The Cluj polynomials are defined, on the basis of Cluj matrices, as

C J (G, x) =
∑

k

m(G, k) · xk (7)
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Fig. 1 Numbering anthracene and phenanthrene molecular graphs

Table 1 UCJDIp(Anthracene A3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 RS

1 0 11 6 6 2 3 4 4 4 4 6 6 5 5 66
2 3 0 7 2 2 2 4 3 3 3 5 5 4 5 48
3 2 7 0 3 2 2 3 3 3 4 5 4 5 5 48
4 6 6 11 0 3 2 4 4 4 4 5 5 6 6 66
5 10 10 10 11 0 7 6 6 6 7 8 7 7 7 102
6 11 10 10 10 7 0 7 6 6 6 7 7 7 8 102
7 8 8 8 8 4 7 0 7 4 4 8 8 8 8 90
8 8 7 7 7 6 6 7 0 7 6 10 10 10 11 102
9 7 7 7 8 6 6 6 7 0 7 11 10 10 10 102
10 8 8 8 8 7 4 4 4 7 0 8 8 8 8 90
11 6 6 5 5 4 4 4 2 3 4 0 11 6 6 66
12 5 5 4 5 3 3 3 2 2 4 3 0 7 2 48
13 5 4 5 5 3 3 4 2 2 3 2 7 0 3 48
14 5 5 6 6 4 4 4 3 2 4 6 6 11 0 66
CS 84 94 94 84 53 53 60 53 53 60 84 94 94 84 1,044

Table 2 UCJDIe(Anthracene A3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 RS

1 0 11 0 0 0 3 0 0 0 0 0 0 0 0 14
2 3 0 7 0 0 0 0 0 0 0 0 0 0 0 10
3 0 7 0 3 0 0 0 0 0 0 0 0 0 0 10
4 0 0 11 0 3 0 0 0 0 0 0 0 0 0 14
5 0 0 0 11 0 7 0 0 0 7 0 0 0 0 25
6 11 0 0 0 7 0 7 0 0 0 0 0 0 0 25
7 0 0 0 0 0 7 0 7 0 0 0 0 0 0 14
8 0 0 0 0 0 0 7 0 7 0 0 0 0 11 25
9 0 0 0 0 0 0 0 7 0 7 11 0 0 0 25
10 0 0 0 0 7 0 0 0 7 0 0 0 0 0 14
11 0 0 0 0 0 0 0 0 3 0 0 11 0 0 14
12 0 0 0 0 0 0 0 0 0 0 3 0 7 0 10
13 0 0 0 0 0 0 0 0 0 0 0 7 0 3 10
14 0 0 0 0 0 0 0 3 0 0 0 0 11 0 14
CS 14 18 18 14 17 17 14 17 17 14 14 18 18 14 224
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Table 3 UCJDEp(Phenanthrene Ph3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 RS

1 0 1 1 2 1 1 2 3 3 3 2 2 2 2 25
2 1 0 1 2 2 1 1 2 2 1 1 1 1 1 17
3 1 1 0 3 2 2 3 2 1 1 3 3 3 2 27
4 2 2 3 0 1 1 1 1 6 3 1 2 1 1 25
5 1 2 2 1 0 1 1 1 1 1 2 2 2 2 19
6 1 1 2 1 1 0 3 2 2 2 3 3 3 3 27
7 1 1 1 1 1 2 0 3 3 6 1 1 2 2 25
8 3 2 2 3 3 3 3 0 1 1 2 2 1 1 27
9 2 2 1 4 2 2 1 1 0 1 1 1 2 1 21
10 2 1 1 1 1 1 4 1 1 0 2 2 2 2 21
11 2 2 1 1 2 2 1 2 1 1 0 1 1 2 19
12 3 3 2 3 3 3 1 2 2 2 1 0 1 1 27
13 2 2 3 2 2 2 2 1 3 3 1 1 0 1 25
14 1 1 2 1 1 1 2 1 1 2 2 1 1 0 17
CS 22 21 22 25 22 22 25 22 27 27 22 22 22 21 322

Table 4 UCJDEe(Phenanthrene Ph3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 RS

1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 2
2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 2
3 0 1 0 3 0 0 0 0 0 1 0 0 0 0 5
4 0 0 3 0 1 0 1 0 0 0 0 0 0 0 5
5 0 0 0 1 0 1 0 0 0 0 0 0 0 0 2
6 1 0 0 0 1 0 0 0 0 0 0 0 0 0 2
7 0 0 0 1 0 0 0 3 0 0 1 0 0 0 5
8 0 0 0 0 0 0 3 0 1 0 0 0 0 1 5
9 0 0 0 0 0 0 0 1 0 1 0 0 0 0 2
10 0 0 1 0 0 0 0 0 1 0 0 0 0 0 2
11 0 0 0 0 0 0 1 0 0 0 0 1 0 0 2
12 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2
13 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2
14 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2
CS 2 2 5 5 2 2 5 5 2 2 2 2 2 2 40

They count vertex proximities of vertices i with respect to any vertex j in G, joined
to i by an edge {pe,i } (the Cluj-edge polynomials) or by a path {pp,i } (the Cluj-path
polynomials), taken as the shortest (distance DI) or the longest (detour DE) paths.
In Eq. 7, the coefficients m(G, k) are calculated from the entries of Cluj matrices,
as provided by TOPOCLUJ software program [46]. The summation runs up to the
maximum k = |{p}| in G. The above published [42] Cluj polynomials referred to
some partitions of the Cluj matrices given by the layer/shell matrices, with no direct
interpretation of the counting content.

In the case of CJDIe polynomial, an orthogonal edge-cutting procedure can be used,
as suggested in Tables 5 and 6. The same procedure was prior used by Gutman and
Klavžar [53] for calculating the Szeged index of polyhex graphs.
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Table 5 Edge cut procedure for calculating Cluj polynomial in anthracene A3

CJDIe_i(A3, x)=4x3+8x7+4x11; D1|x=1=112 CJDIe_ j (A3, x) = 4x3 + 8x7+4x11; D1|x=1=112
CJDIe(A3, x) = 8x3 + 16x7 + 8x11; P1|x=1 = 32 = 2e; D1|x=1 = 224
CJDI p(A3, x)=16x2+20x3+30x4 + 20x5 + 28x6 + 28x7 + 20x8 + 12x10 + 8x11; D1|x=1 = 1044
CJDEe(A3, x) = 28x + 4x3; D1|x=1 = 40
CJDE p(A3, x) = 84x + 60x2 + 24x3 + 10x4 + 4x6; D1|x=1 = 340

Table 6 Edge cut procedure for calculating Cluj polynomial in phenanthrene Ph3

CJDIe_i(Ph3, x)=3x3+2x5+2x7+4x9 + 5x11 CJDIe_ j (Ph3, x) = 5x3 + 4x5 + 2x7 + 2x9 + 3x11

D1|x=1 = 124 D1|x=1 = 100
CJDIe(Ph3, x) = 8x3 + 6x5 + 4x7 + 6x9 + 8x11; P1|x=1 = 32 = 2e; D1|x=1 = 224
CJDI p(Ph3, x)=18x2+20x3+36x4+20x5+14x6+20x7+28x8 + 6x9+12x10+8x11; D1|x=1=1050
CJDEe(Ph3, x) = 28x + 4x3; P1|x=1 = 32 = 2e; D1|x=1 = 40
CJDE p(Ph3, x) = 84x + 64x2 + 30x3 + 2x4 + 2x6; D1|x=1 = 322

Since the Cluj matrices are unsymmetric, two polynomials, one with respect to the
endpoint i (and to the first triangle of UCJDIe) and the other one referring to the
endpoint j of the edge e(i , j) (and to the second triangle of the mentioned matrix)
can be written. However, they depend on the numbering and only their sum polyno-
mial is invariant (see Tables 5 and 6). This last polynomial will only be taken into
consideration in the following discussion.

4 Properties of the Cluj polynomials

Among the properties of counting polynomials, the value in x = 1 and the first deriv-
ative in x = 1 are the most important. In the case of CJDIe polynomial, the value in
x = 1, P|x=1 = 2e. It is evident, since every edge is visited twice.

123



J Math Chem (2009) 45:295–308 301

The first derivative, in x = 1, D1|x=1, gives the meaning of the topological property
collected by a matrix/polynomial. In this case, the following theorem holds:

Theorem 1 In a bipartite graph, the sum of all edge-counted vertex proximities equals
the product v×e of the number of vertices and edges in G.

Demonstration In a bipartite, planar graph, permitting orthogonal edge-cuts, for
every edge e(i, j) ∈ E(G) there is a clear separation of proximities {pe,i } and {pe, j }
of its endpoints. Let’s denote by pe,i and pe, j the cardinalities of the above sets. In a
bipartite graph, we always can write

pe,i + pe, j = v (8)

It follows that, for all edges, e ∈ E(G), the total of edge-counted vertex proximities
pe equals the product v × e, thus demonstrating the theorem.

Recall that an orthogonal (or an elementary) edge-cut of a (polycyclic) bipartite
planar graph G, is a straight line segment, passing through the centers of some edges
of the graph, being orthogonal to these edges, and intersecting the perimeter of G
exactly two times, so that at least one polygon lies between these two intersection
points [2,52,53]. Note that trees also allow elementary edge-cuts.

In the orthogonal edge-cut procedure for calculating the CJDIe index, (i.e., the
sum of all entries in the matrix UCJDIe), the total of edge-counted vertex proximities
pe = C J DIe(G, x)D1|x=1 is calculated as:

pe =
∑

c

m(G, c) · c · (pe,i + pe, j ) = v ·
∑

c

m(G, c) · c = v × e (9)

where the coefficients m(G, c) are related to the occurrence of edge-cuts (see below)
of extent c and

∑
c m(G, c) · c = e(G). The above theorem can be extended to 3D

bipartite molecular structures, although the separation of the proximities is not so evi-
dent. Numerical results provided by the Cluj matrix support this extension.

Corollary to Theorem 1. In bipartite graphs there are no equidistant vertices with
respect to the two endpoints of any edge.

The Cluj matrix counts the vertices lying closer to each of the endpoints of any edge
and leaves the equidistant vertices uncounted. Because of relation (8), it follows that,
in bipartite graphs, all vertices are counted and no equidistant vertices exist. Next, for
all of the edges in G, one obtains the total of vertex proximities, pe, equal to v × e.
This is the main result provided by the Cluj matrix/polynomial. The vertex proximity
calculation could be of interest in calculating the bond polarity and molecular dipole
moments. In this respect, weighted molecular graphs must be used.

Recall that, in calculating the Szeged index [53–61] (a topological index related to
the Wiener index, [62] which counts all the shortest distances in a graph), equidistant
vertices are also not counted.
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Table 7 Formulas for Cluj-edge (and related) polynomials in acenes Ah ; h = no. of hexagons in molecule

C J DIe(Ah−even , x) = 8 · ∑h/2
k=1 x(4k−1) + 2(h + 1) · x(2h+1) + 8

×∑h
k=(h+2)/2 x(4k−1); D1|x=1 = 2(2h + 1)(5h + 1) = v · e

C J DIe(Ah−odd , x) = 8 · ∑(h−1)/2
k=1 x(4k−1) + (2(h − 3) + 16) · x(2h+1) + 8

×∑h
k=(h+3)/2 x(4k−1); D1|x=1 = v · e

C J DEe(Ah−even , x) = (8h + 4) · x + 4 · ∑h/2
k=2 x(2k−1) + 2 · x(h+1); D1|x=1 = h2 + 10h + 2

C J DEe(Ah−odd , x) = (8h + 4) · x + 4 · ∑(h+1)/2
k=2 x(2k−1); D1|x=1 = h2 + 10h + 1

�(Ah , x) = 2h · x2 + x(h+1); |D1|x=1 = e = 5h + 1; D2|x=1 = h(h + 5)

C I (Ah) = (�′(Ah))2 − (�′(Ah) + �′′(Ah)) = (5h + 1)2 − (5h + 1 + h(h + 5)) = 24h2

�(Ah , x)|x=1 = v/2 = 2h + 1

�(Ah , x) = 4h · x(5h−1) + (h + 1) · x4h; D1|x=1 = 24h2

Table 8 Formulas for Cluj-edge (and related) polynomials in phenacenes Phh ; h =no. of hexagons in
molecule

C J DIe(Phh−even/odd , x)=8 · x3+4 · ∑h−1
k=2 x(4k−1)+6 · ∑h−1

k=1 x(4k+1) + 8 · x4h−1; D1|x=1 = v · e

C J DIe(Ah/Phh) = D1|x=1 = v · e = 2(2h + 1) · (5h + 1) = 2(10h2 + 7h + 1)

C J DEe(Phh−even , x) = (8h + 4) · x + h · x3 + 2 · ∑h/2
k=2 x(4k−1); D1|x=1 = h2 + 12h − 2

C J DEe(Phh−odd , x) = (8h + 4) · x + (h + 1) · x3 + 2 · ∑(h−1)/2
k=2 x(4k−1); D1|x=1 = h2 + 10h + 1

�(Phh , x) = (h + 2) · x2 + (h − 1) · x3; D1|x=1 = e = 5h + 1; D2|x=1 = 8h − 2

C I (Phh) = (5h + 1)2 − (5h + 1 + 8h − 2) = 25h2 − 3h + 2

�(Phh , x)|x=1 = v/2 = 2h + 1

�(Phh , x) = 2(h + 2) · x(5h−1) + 3(h − 1) · x(5h−2); D1|x=1 = 25h2 − 3h + 2

Theorem 2 In a tree graph, the sum of all path-counted vertex proximities is twice
the sum of all distances in G or twice the Wiener W index:

pp = C J DIp(G, x)D1|x=1 = 2W.

Demonstration The column sums in the UCJDIp matrix equals the column sums in
the matrix of distances while the row sums in UCJDIp matrix are identical to those in
the Wiener matrix [2,52]. It is well-known that the half sum of entries in these matrices
counts all the distances in a tree graph, or the Wiener index. Since the first derivative
of the CJDIp polynomial is the sum of all entries in UCJDIp, and this sum is twice
the the Wiener index, the theorem is thus demonstrated.

In cycle-containing graphs, the Cluj index CJDIp is different from both the Wiener
and Szeged indices [2,52].

Formulas for calculating the Cluj polynomial CJDIe in acenes Ah and phenac-
enes Phh , function of the number of their hexagons h, are given in Tables 7 and 8,
respectively.
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Theorem 3 A full Hamiltonian graph FH shows the minimal exponent value, 1, and
the minimal value of the first derivatives of Cluj-detour polynomials:

CJDE p(G, x)D1|x=1 = v(v − 1) and CJDEe(G, x)D1|x=1 = 2e.

Demonstration Recall that a full Hamiltonian FH graph [48] has any pair of its verti-
ces joined by a Hamiltonian path (i.e., a path visiting all the vertices of G). Considering
that the Cluj fragments/proximities are counted by deleting the path p(i, j) except-
ing its endpoints, the proximity of i is always 1, vs. any other vertex j in G. Thus,
the exponent takes the minimal (unity) value. The coefficient of this unique term of
CJDEp polynomial is v(v − 1), as counted from the CJDEp matrix (which shows all
its non-diagonal entries equal to unity). For CJDEe, the demonstration is immediate.
Any FH graph shows all the non-diagonal entries in CJDEp matrix equal to unity but
the reciprocal is not always true.

Corollary to Theorem 3. If the FH graph is a complete graph, then: CJDE p(G, x)

D1|x=1.......... = CJDEe(G, x)D1|x=1 = 2e.
In complete graphs, all the vertices are adjacent. Thus, the two polynomials, defined

on edges and paths, respectively, coincide, thus v(v − 1) = 2e.
Two related polynomials are included in the above tables. One is the Omega poly-

nomial, [63] �(G, x), which counts orthogonal edge-cuts and the second one is the
� polynomial �(G, x), which is somehow complementary to the above one. It was
shown elsewhere [64,65] that the edges forming an edge-cut strip are locally co-dis-
tant, or equidistant or also “topologically” parallel.

Let m(G, c) denote the occurrence of the edge-cut sequence of length c (i.e., the
number of edges cut-off) in G. In a bipartite, planar graph, the two polynomials are
defined as

�(G, x) =
∑

c

m(G, c) · xc (10)

�(G, x) =
∑

c

m(G, c) · c · x (e−c) (11)

Their D1|x=1 give the total number of equidistant and non-equidistant edges vs each
edge in G

�(G, x) D1|x=1 = e = |E(G)| (12)

�(G, x) D1|x=1 = �(G) (13)

where �(G) equals (in partial cubes) the Khadikar’s PI topological index [66]. Note
that Ashrafi et al. [67] proposed the PI polynomial PI(G, x), which first derivative
always gives the Khadikar’s PI topological index.
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Two indices have been defined on Omega polynomial. The first one, CI, is derived
from the first and second derivatives, in x = 1, as

C I (G) = (�(G, x)D1)2 − (�(G, x)D1 + �(G, x)D2) |x=1 (14)

The second descriptor is calculable from all possible derivatives Dn, in x = 1, and
normalized to the first one (which equals the number of edges in G)

I�(G) = (1/�(G, x)D1) ·
∑

n

(�(G, x)Dn)1/n |x=1 (15)

Theorem 4 In a bipartite planar graph (in a partial cube, in general), CI and PI
indices are identical.

Demonstration From (14) and writing m(G, c) as simply m, CI is calculable as

C I (G) =
∑

c

{(m · c)2 − [m · c + m · c(c − 1)]}

=
∑

c

[(m · c)2 − m · c2] = e2 −
∑

c

m · c2 (16)

On the other hand, from (11) and (13), PI is calculated as

P I (G) =
∑

c

m · c · (e − c) = e
∑

c

m · c −
∑

c

m · c2 = e2−
∑

c

m · c2 (17)

Clearly, the two indices are identical, because they transform into one and the same
ultimate expression, also proposed by John et al. [68] for calculating PI in benzenoid
hydrocarbon graphs. In the above, the following relation holds

e(G) =
∑

c

m · c = �(G, x)D1|x=1 = �(G, x)|x=1 (18)

However, relation (11) is not always valid, so that CI is, in general, different from PI,
excepting the case of bipartite planar graphs (partial cubes, in general) [69].

In bipartite graphs embeddable in surfaces of g > 0, e.g., in toroidal polyhex-
es, relation (11) is still more hidden, despite C I = P I . In case of the torus T(6,3)H
[8,12]: �(G, x) = 12x4+4x24; e = 144; C I = 18240; �(G, x) = 96x122+48x136;
P I = 18240. According to (11) the polynomial would be: �(G, x) = 96x120+48x140

that gives the same PI index value. At this moment no generalization of this case was
found.

We stress here that polynomials CJDI(G,x) and �(G, x) count, in a same manner,
non-equidistant subgraphs (vertices and edges, respectively). An application of these
descriptors is presented below.
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Table 9 Structure of polyhex hydrocarbons

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

5 Predicting the resonance energy of planar polyhexes

For testing the correlating ability of descriptors derived from Cluj and Omega poly-
nomials, a data set of 15 planar polyhex hydrocarbons (Table 9), with at least one
phenanthrenic unit, have been selected from the Randić’s review [70]. The predicted
property was the resonance energy, which is claimed for supporting the aromatic char-
acter of such molecules. Topological descriptors and the corresponding energetic data
are listed in Table 10. The plot of resonance energy vs calculated values (by the best
regression equation (19)) is presented in Fig. 2. The calculations were performed by
the TopoCluj [46] and Omega [71] software packages.

REcalc = 5.02357 − 0.00025 · C J DIp + 0.00489 · C I − 2.68146 · I� (19)

n = 15; R2 = 0.984; F = 228.358

6 Conclusions

A novel class of counting polynomials, called Cluj polynomials was proposed on the
ground of previous Cluj matrices.
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Table 10 Topological and energetic data for molecules in Table 9

Molecule I CI UC J DIp RE (eV) RE calc.

1 1.498 1,200 11,200 4.085 4.040
2 1.675 1,194 11,237 3.515 3.526
3 1.348 612 4,373 3.209 3.294
4 1.455 610 4,392 3.111 2.993
5 1.455 610 4,290 2.986 3.019
6 1.638 606 4,301 2.531 2.506
7 1.386 390 2,352 2.708 2.619
8 1.558 878 7,350 3.361 3.278
9 1.386 390 2,306 2.506 2.630
10 1.558 878 7,248 3.27 3.304
11 1.523 388 2,303 2.311 2.254
12 1.765 872 7,219 2.671 2.727
13 1.436 218 1,050 1.955 1.973
14 1.455 610 4,318 2.986 3.012
15 1.675 1194 11,404 3.45 3.484

y = 1.0003x - 0.0011
R2 = 0.984

1.75

2.25

2.75

3.25

3.75

4.25
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Fig. 2 Resonance energy versus calculated values (Eq. 18)

It was shown that the polynomial coefficients are calculable from the above matrices
or by means of orthogonal edge-cuts, in case of C J DIe version.

Basic definitions and properties of the Cluj matrices and corresponding polynomi-
als were given. The meaning of Cluj descriptors, as vertex proximity descriptors, was
clearly evidenced.

It was demonstrated that, in bipartite graphs, the sum of all edge-counted vertex
proximities equals the number v × e, of vertices and edges in the graph. In trees, the
sum of all path-counted vertex proximities is twice the Wiener index.

A full Hamiltonian graph FH was shown to have the minimal exponent value, 1,
and the minimal value of the first derivatives of Cluj-detour polynomials.

The relation of Cluj polynomials with the � and PI polynomials was recognized.
The descriptors derived from the Cluj and Omega polynomials were used in pre-

dicting the resonance energy of a set of planar polyhexes. The use of vertex proximity
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calculation in evaluating the bond polarity and molecular dipole moments was sug-
gested.

Acknowledgement The paper is supported by the CEEX 41Romanian GRANT, 2006.
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40. D. Stevanović, Publ. Elektrotehn. Fac. (Beograd) Ser. Mat. 8, 84–87 (1997)
41. M.V. Diudea, J. Chem. Inf. Comput. Sci. 34, 1064–1071 (1994)
42. M.V. Diudea, Studia Univ. “Babes-Bolyai” 47, 131–139 (2002)
43. M.V. Diudea, MATCH, Commun. Math. Comput. Chem. 45, 109–122 (2002)
44. M.V. Diudea, O. Ursu, Indian J. Chem. 42A, 1283–1294 (2003)

123



308 J Math Chem (2009) 45:295–308

45. M. Stefu, M.V. Diudea, in: Nanostructures–Novel Architecture, ed. by M. V. Diudea (Nova, New York,
2005), pp. 127–165

46. O. Ursu, M.V. Diudea, TOPOCLUJ software program, Babes-Bolyai University, Cluj (2005), http://
chem.ubbcluj/~diudea

47. M.V. Diudea, J. Chem. Inf. Comput. Sci. 37, 300–305 (1997)
48. M.V. Diudea, B. Parv, I. Gutman, J. Chem. Inf. Comput. Sci. 37, 1101–1108 (1997)
49. M.V. Diudea, G. Katona, I. Lukovits, N. Trinajstic, Croat. Chem. Acta 71, 459–471 (1998)
50. L. Jäntschi, G. Katona, M.V. Diudea, MATCH, Commun. Math. Comput. Chem. 41, 151–188 (2000)
51. D. Opris, M.V. Diudea, SAR/QSAR Environ. Res. 12, 159–179 (2001)
52. M.V. Diudea, M.S. Florescu, P. Khadikar, Molecular Topology and it’s Applications (EfiCon Press,

Bucharest, Romania, 2006)
53. I. Gutman, S. Klavžar, J. Chem. Inf. Comput. Sci. 35, 1011–1014 (1995)
54. I. Gutman, Graph Theory Notes of New York 27, 9–15 (1994)
55. A.A. Dobrynin, I. Gutman, Publ. Inst. Math. (Beograd) 56, 18–22 (1994)
56. A.A. Dobrynin, I. Gutman, Graph Theory Notes of New York 2(8), 21–23 (1995)
57. A.A. Dobrynin, I. Gutman, G. Domotor, Appl. Math. Lett. 8, 57–62 (1995)
58. P.V. Khadikar, N.V. Deshpande, P.P. Kale, A. Dobrynin, I. Gutman, G. Domotor, J. Chem. Inf. Comput.

Sci. 35, 547–550 (1995)
59. S. Klavžar, A. Rajapakse, I. Gutman, Appl. Math. Lett. 9, 45–49 (1996)
60. J. Žerovnik, Croat. Chem. Acta 69, 837–843 (1996)
61. A.A. Dobrynin, I. Gutman, Croat. Chem. Acta 69, 845–856 (1996)
62. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)
63. M.V. Diudea, Carpath. J. Math. 22, 43–47 (2006)
64. M.V. Diudea, S. Cigher, A.E. Vizitiu, O. Ursu, P.E. John, Croat. Chem. Acta 79, 445–448 (2006)
65. A.E. Vizitiu, S. Cigher, M.V. Diudea, M.S. Florescu, MATCH Commun. Math. Comput. Chem. 57,

457–462 (2007)
66. P.V. Khadikar, Nat. Acad. Sci. Lett. 23, 113–118 (2000)
67. A.R. Ashrafi, M. Manoochehrian, H. Yousefi Azari, Util. Math. 71, 97–108 (2006)
68. P.E. John, P.V. Khadikar, J. Singh, J. Math. Chem. 42, 37–45 (2007)
69. S. Klavžar, MATCH Commun. Math. Comput. Chem. 59, 217–222 (2008)
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